Hop, a Language for Programming the Web 2.0

Manuel Serrano

Inria Sophia Antipolis
2004 route des Lucioles - BP 93F-06902
Sophia Antipolis, Cedex, France
http://www.inria.fr/mimosa/-
Manuel.Serrano

Abstract

Hop is a new higher-order language designed for programming

interactive web applications such as web agendas, welrigalle
music players, etc. It exposes a programming model based@mn t
computation levels. The first one is in charge of executirgalyic

of an application while the second one is in charge of exagutie
graphical user interface. Hop separates the logic and tqghgral
user interface but it packages them together and it supptidag
collaboration between the two engines. The two executiomsflo
communicate through function calls and event loops. Botis@an
initiate communications.

The paper presents the main constructions of Hop. It sketche
its implementation and it presents an example of a simple web

application written in Hop.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guage§ Language Classifications—Applicative (functional) 1an
guages,, Concurrent, distributed, and parallel langyaBesign
languages

General Terms Design, Languages

Keywords Web programming, Functional programming

Download

Hop is available athttp://hop.inria.fr.
The web site contains the distribution of the source code, th
online documentation, and various demonstrations.

1. Introduction

The recent evolution of the web makes it suitable for replgci
traditional graphical user interfaces (henceforth GUT$)e com-
bination of fast HTML rendering of modern web browsers (such
as Gecko 20051111, shipped with Firefox 1.5), generalizgd s
port of CSS2 [15], yet expected to be rapidly supplanted b&S
and the recent adoption of asynchronous transactions (faq A
the acronym ofAsynchronous JavaScript and XMlmakes web
applications nearly as fancy and reactive as traditionalsG8ome
famous applications such as Google/mail, Google/map,rabzi’s

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA06 October 22—26, 2006, Portland, Oregon, USA.
Copyright(© 2006 ACM 1-59593-491-X/06/0010. . . $5.00

Erick Gallesio

Université de Nice
Inria Sophia Antipolis
930 route des Colles, BP 145, F-06903
Sophia Antipolis, Cedex, France

http://wwuw.essi.fr/~eg

Florian Loitsch

Inria Sophia Antipolis
2004 route des Lucioles - BP 93F-06902
Sophia Antipolis, Cedex, France

http://www.inria.fr/mimosa/-
Florian.Loitsch

mailer demonstrate that web applications have bridgedapenith
traditional GUIs.

In addition to allowing reactive and graphically pleasimg i
terfaces, web applications ade factodistributed. Implementing
an application with a web interface makes it instantly opethe
world and accessible from much more than one computer. The we
also partially solves the problem of platform compatiiliecause
it physically separates the rendering engine from the caatiomn
engine. Therefore, the client does not have to make assomgoti
the server hardware configuration, and vice versa. LasliHis
highly durable. While traditional graphical toolkits evelcontin-
uously, obsoleting existing interfaces and breaking backveom-
patibility, modern web browsers that render on the edge veefe®
are still able to correctly display the web pages of the eE980's.

For these reasons, the web is arguably ready to escape tea bea
track of n-tiers applications, CGI scripting and interantbased on
HTML forms. However, we think that it still lacks programngin
abstractions that minimize the overwhelming amount of et
gies that need to be mastered when web programming is iriolve
As a step in this direction, we propose Hop, a higher order lan
guage aimed at programming interactive web applicationss |
built on top of HTML, CSS, and JavaScript that are considered
in this work, as assembly languages.

1.1 The HOP programming language

Hop is mainly designed for programming small- to mediumediz
interactive applicationgcross the web. It is designed as a general-
purpose web programming language which targets applitatio
such as electronic agendas, photographs browsers, masierg)
mailer clients, operating system administration tools, smon. In
addition to enabling programming distributed applicasiover the
web, Hop is also convenient for implementing applicatidva tun

on a single computer, on behalf of a single user. In that et
case, Hop is considered as a replacement for traditionphgral
toolkits.

In contrast with most web-oriented languages and framesvork
such as PHP and Ruby On Rails, the design of Hop is not database
centric. That is, while its standard library provides ARds an-
aging databases, Hop is not specially tuned for programrmapig
plications that access databases via the web. Hop is designe
programming various kinds of applications that need gieghiser
interfaces amongst which some might access databases.

Hop follows the path opened by Tcl/Tk, Java/Swing, or C/GTK+
but it differs from its ancestors by enforcing a strict sepian be-
tween the programming of the interface from the programnaihg
the logic of the applications. For that, it exposes a duat @xe-
cution model where one core executes the computations désde
the logic of the program while the second core executes the co
putations needed by the graphical interface. We have datilg

provided Hop with a stratified language approach in ordemte e
phasize the duality of these programs. However Hop tiglils!
the code of the interface and the code of the logic:

e it packages a whole application in a single location (e.dea fi

e it supports function calls that traverse the strata.

e it supports data exchange between the strata.

Hop helps programming web applications because:

e it eases the deployment of applications by hiding URLs and by
packaging the components of an application in a single place

it simplifies the control flow of the web application by allowi
symmetric communications that can be initiated by both ends

it supports efficient event loops that avoid busy waiting.

it eases the communication between servers and clientgiby su
porting transparent function calls and partially sharech@a
spaces.

it provides a library of pre-defined widgets.

it allows users to implement their own set of widgets thatloan
combined with the standard library for implementing cormple
GUIs.

1.2 Overview of the paper

The paper is organized as follows. Section 2 informally ents
the stratified language design. Section 3 presents its syfhte
following Section 4 presents its semantics. It zooms in timefion
calls, and it presents the Hop’s event loop. Section 5 ptesen
an example of Hop programming. It shows a simplistic IMAP
web client. Section 6 sketches the current implementatidtop.
Section 7 presents related work and envisions future work.

2. Overall language design

In this section, we present the rationale of Hop. We infofynal
present its execution model and its syntax. This sectioy gines
the intuition of what programming with Hop means. The techhi
presentations are left for Sections 3 and 4.

2.1 Rationale

Hop fosters a model where tiheaincomputation of an application
is executed on aerverand the graphical user interface is executed
on remoteclients From the user point of view, a Hop program is ex-
ecuted within a web browser and it is associated with a wedhkm
URL. Once the program starts, the server and the clientdnzont

uously communicate. The exchanges are implemented by eemot

function calls and event loops. Hop is well suited for impésting
applications that need frequent communications betwessédtver
and the client. For instance, we have implemented a musjepla
with Hop that continuously displays, on the client, the skbtime
of the songs played on the server. On that particular apjditsas

When a Hop program starts, it first executes on the main engine
This elaborates the description of a graphical user interfhat is
sent to a GUI engine. From that moment, the execution flows fro
the GUI engine to the main engine and vice versa. The GUI esgin
may invokeservicedrom the main engine by the means of function
calls. The main engine magignal events to the GUI engines.
Each event carries an identity and a value. Events are héndle
asynchronously. They are used by the main engine to notify GU
engines when a new information is available. They are a nfeans
implementingpushingon the web.

2.3 Adual language

Hop is astratifiedlanguage. The first stratum is dedicated to pro-
gramming themainengines, or the servers. The second stratum is
dedicated to programming graphical user interfaces, ocltaats.

Both strata provide different facilities. On the one harttk t
main stratum provides an API for accessing the file systentlzad
other resources of the computer that hosts it, but it doesupyort
any facility for handling graphical user interfaces. On titeer
hand, the GUI strata is provided with a full set of functiaoties for
dealing with graphical interactions but it has drasticaéigtricted
accesses to the resources of the computer it executes caustec
they are using different APls, in general, an expressioh@fain
stratum cannot be executed on the client and vice versa.

2.4 Objectives

As presented in Section 3, Hop uses a compact syntax that is
close to the syntax used in traditional XML authoring. Hoesev
it is a complete programming language that subsumes many web
technologies. As such, it allows the implementation ofdifes that
can be combined for implementing complex applications.

For the sake of the example and to give an intuition of what Hop
programming looks like, here is a complete Hop program:

(let ((def (<DIV> ""))
(svc (service (w)
(<P> (sql-select
"FROM dict WHERE (def=~a)" w)))))

(<HTML>
(<BODY>
(<TABLE>
(<TR>
(<TD> "search")
(<TD> (<INPUT>
:type "text"
:onkeyup
~(with-hop ($svc this.value)
(lambda (h)
(set! $def.innerHTML h))))))
(<TR>

(XTD> :colspan 2 def))))))

This program acts similarly to Google/suggest. The cliest d
plays an input box. It interactively reacts to key press &udBach
time a new character is entered, the client invokes a sexice

with many others we have implemented with Hop, the server and the server which searches in a database the definition of diné w

the client are frequently hosted by the same physical coanput

2.2 A dual core execution

A Hop program is executed simultaneously on several engirres
main engine is dedicated to executing the logic of the program. It
executes CPU demanding computations and operations thatee
system privileges for accessing files or other resources.oflher
engines, henceforth call&lUl enginesare dedicated to executing
actions related to the programming of the graphical userfiates.
Engines are mapped to actual physical computers. More than o
engine can be mapped to a single computer.

sent by the client. On success, the definition is displayed ba
the client display. The most important part of this examgléhie
with-hop construction that invokes, from the client, a function lo-
cated on the server. It is detailed in Section 4.3

3. The HOP syntax

This section presents the syntax of Hop. It first presentsyheax
of the main stratum. Then, it presents the escape syntaxigtrtic-
tion that switches to the GUI stratum. The formal definitidrihe
syntax is given in the Appendix.

3.1 The syntax of the main stratum stratum inside an expression of the GUI stratum. There igmiotb
the nesting level so these main stratum expressions mayninuse
the “~” character to escape back to the GUI stratum. For the sake

introduces an extra open parenthesis before any markupeand r ©Of the example, let us consider a re-writing of the previowseple
places the closing markup with the single closing pareihés where the approximation af is moved to the main stratum:
also encloses string literals withih characters. Therefore, the (gpys>
HTML expression: (<BODY>
(<BUTTON>

conclick ~(alert $(x 4 (atan 1)))

Atfirst glance, the syntax of the main stratum of Hop is a mare v
ation around HTML involving superficial modifications. It nedy

<HTML>

<BODY> "Click me to see an approximation of PI")))
A plain text
</BODY> Note that these two programs are likely to show different ap-
</HTML> proximations since no provision is taken to guarantee ti@pte-

is written in Hop, as: cision of the arithmetic of the main stratum and the preaisibthe
T GUI stratum are the same.

(<HTML>

(<BODY> . 4. The HOP dual evaluation
("A plain text")))

))) - - Hop brings abstraction to HTML. While HTML is a mere syntax
white spaces. Hence the corresponding Hop program of thelHTM i order to produce aalue While HTML markups are syntactic
document of Figure 1 is written as in Figure 2. elements, in Hop, they are functions. More precisely, thanitey
of the Hop expression:

<HT1‘;IL> (fun ao as...)
BDEKBLE e g is the application of the functiofun to the argumentay, a;. Pro-
width="1007%"> . . . i . .
<TR> <TD>0</TD></TR> vided with this semantics, we can reconsider the previoys ¢4
<TR> <TD>1</TD></TR> pression: ("A plain text")
<TR> <TD>2</TD></TR> This expression is actually the call of the functik®» with the lit-
<TR> <TD>3</TD></TR> eral string"A plain text" as argument. It should be noted that
</TABLE> Hop identifiers may use more characters than most progragimin
</BODY> languages. In particular, the characterand > are legal identi-
</HTML> fiers characters, as letters, digits,?, !, and many others (see the
Figure 1. A simple HTML file. Appendix).

Hop is unsurprisingly based on the Scheme algorithmic pro-
gramming language [9] for which familiarity is assumed i th
rest of this paper. Hop extends Scheme in many directions. It
supports object-oriented programming, exceptions, nesjund
multi-threading. It comes with various tools and librargegh as
tools for constructing parsers and libraries for prograngmet-

In spite of the strong resemblance, there is a very important
difference between the semantics of the two sources. Whéde t
HTML source can be interpreted as the external representafi
a tree, the Hop source is actually a computer program that can
be evaluated in order to produce a document. This is detailed

Section 4. works, multimedia applications, and so on. In addition &sthfea-

tures traditionally offered by programming languages, Hop-

(<HTML> ports original constructions specially designed for pangming
(<BODY> web applications. Since this paper focuses on web progragimi

(<TABLE> :width "100%" it is intentionally shallow on the constructions that aré stoictly

(XTR> (<TD> 0))
(<TR> (<TD> 1))
(<TR> (KTD> 2))

related to this topic.
In the rest of this section, we present the Hop evaluationahod

(<TR> (<TD> 3))))) First, in Section 4.1 we present how a program is spawned, The
in Section 4.2, we present how GUI expressions are builtnTthe
Figure 2. A simple HOP program. Section 4.3 constitutes the heart of this paper. It predemtsthe

two strata collaborate.

3.2 The syntax of the GUI stratum 4.1 Dual Execution

The GUI stratum is composed GUI expressionsThey are nested ~ The execution of a Hop program differs from the executiomadit
insidemain expressionsThe “-” character escapes from main ex- tional computer programs. In order to be executed, a Hopranog
pressions to GUI expressions_ The GUI expressions are |y|sua| has to be first loaded ontOP server This server conforms to the

used as values of attributes, as can be seen in the following e HTTP protocol [4]. It binds the program to an URL provided bgt

ample: administrator of the server. This URL is used by clients. fiveb
browsers) to start the program.
(<HTML> A Hop program constructs esponseio an HTTP request. In
(EE&D}EOM general, this response is a XML document but in some sitositio

it can be any other data structures. For the sake of simplicit
this paper, we focus on HTML responses only but all the pitesen
techniques also directly apply to XML.

The character $” escapes from the GUI stratum back to the The execution of a Hop program is distributed. One part is
main stratum. That is, it introduces an expression of thenmai executed on theerverwhich evaluates the expressions of the main

ronclick ~(alert (x (Math.atan 1) 4))
"Click me to see an approximation of PI")))

stratum. The second part is executed ondlient which evaluates
the expressions of the GUI stratum. In general the execiiibon
switches from a server to a client and vice versa but Hop also
allows two (or more) execution flows to run in parallel. Thiit
communicates with the server via remote function calls. Séveer
communicates with the client via signals. Both communarati
means allow compound values to be carried.

4.2 The Elaboration time

The purpose of most Hop programs is to build HTML pages that
are visualized by web browsers. The phase of the executidheon
server where the HTML pages are constructed is cadlafiora-
tion. It takes place before any execution can start on the client.
Hop implements HTML pages as trees. The Hop libraries of
the two strata provide functions for constructing and malaifing
them. In both strata, the trees are first class values. Hémegecan
be passed as argument to functions, returned as resultsianed
into data structures and variables. For the sake of the eeamp
Figure 3 is a re-writing of the Hop program presented Figure 2
where the four rows of the table are bound to local variables.

(let ((x0 (<TR>
(r1 (KTR>
(r2 (<TR>
(r3 (<TR>
(<HTML>
(let ((table (<TABLE> rO rl r2 r3)))
(<BODY> table))))

(XTD> 0)))
(<TD> 1)))
(<TD> 2)))
(<TD> 3))))

Figure 3. Using variables in HOP programs.

1: (define x "out")
2: (define y (vector 1 2 3))
3:
4: (<HTML>
5: (<BODY>
6: (<SCRIPT> ~(define x 0))
7: (<P> :onmouseover -~ (begin
8: (set! x (+ 1 x))
9: (alert "over=" x))
10: ronmouseout (alert $x)
11: conclick (alert $y)
"£00")))

Figure 5. A program before elaboration.
4: (KHTML>
5: (<BODY>
6: (<SCRIPT> ~(define x 0))
7: (<P> :onmouseover ~(begin
8: (set! x (+ 1 x))
9: (alert "over=" x))
10: ronmouseout ~(alert "out")
11: conclick ~(alert ’#(1 2 3))
12: "fo0")))

Figure 6. The program after elaboration.

As it can be seen here, the varialevhich is bound to a Hop
vector in Figure 5, lin@ is replaced with a constant vector in Figure

The interest of such an approach is better understood when6, line 11 This shows that the elaboration can inject complex data

some abstraction is used. In the example of Figure 4 a fumctio
is defined for automating the construction of the rows of Hime.

(define (<ROW> v)
(KTR> (KTD> v)))

(<HTML>
(let ((table (<TABLE>
(<ROW> 0) (<ROW> 1)
(<ROW> 2) (<ROW> 3))))
(<BODY> table)))

Figure 4. Using HOP naming conventions.

Note that the Hop convention is to surround the name of the
functions that build HTML trees by the and> characters and to
use upper case letters. This example implicitly unveils thap
standard HTML markups are implemented as regular functikbns
also shows that defining a new markup in a user program is ne mor
complex than defining a function.

As presented in Section 3.2, any expression of the mairustrat
can be nested in an expression of the GUI stratum after apiegca
$ character. At elaboration time, the escaping main stratgres-
sions are evaluated and the resulting values are injectttkire-
sponse. In consequence, when the response is shipped te@tite ¢
itis totally stripped of main stratum expressions. Let'asider the
Hop source of Figure 5 before elaboration.

Reflecting the two different execution times, the two strata

structures in the response. In particular it can inject n@sches
that are under construction. This is illustrated by the mxemple
that shows that an HTML tree can be used when constructing
a document in the main Hop program (lideof Figure 7)and

can also be injected in the GUI stratum (lidg The following
example constructs an HTML page that swaps the two items of
the unordered list each time the button is clicked.

(let ((el (("foo") ("bar"))))
(<HTML>
(<BODY>
el
(<BUTTON>
ronclick
~(let* ((nodes (dom-child-nodes $el))
(a (array-ref nodes 0))
(b (array-ref nodes 1)))
(dom-append-child!
$el (dom-replace-child! a b)))
"swap me"))))

~N
HSooann oy

Figure 7. Injecting a tree branch.

4.3 HOP services
This section presents one of the main technical noveltydirohy

separate name spaces. A variable from the main stratum and a4op, namely the Hop remote services.

variable from the GUI stratum can hence hold the same name

without conflicting. In other words, the variables definetetl and
line 6 of Figure 5 are different. The elaboration phase replaces th
occurrences of the variablethat belongs to the main stratum line
10with the value"out" but it leaves the variable that belongs to
the GUI stratum liné as shown in Figure 6.

4.3.1 HOP service definition

HTML's URLSs play a role similar to functions in programmineyi-
guages. Let us consider the following HTML page (for simiplic
expressed in the Hop syntax):

(<HTML>
;; a link to google portal Anonymous services are illustrated on the example presente
(<A> :href "http://www.google.com" "Google portal") P P ; in i f
o eeed p:) -googLe. g-e P in Figure 9. This Hop program manages a dynamic list of items.
EQFSRSI:W ° e The form started at lin® adds new entries. Clicking the submit
‘action "http://wwy.google.con/search" button of line8, calls the anonymous service defined in IG1€On
(KINPUT> :type "text" :name "q" :value "") the server, this service recursively calls the functioap, defined

(KINPUT> :type "submit" :value "search"))) in line 1, with the value of the input entry of lin@added to the list.

In a plain HTML document, the URhttp://www.google. - (let loop ((items (list "foo" "bar" "gee")))

com could be considered as a function named . google. com (<HTML>
whose signature is: (<BODY>

unit —— HTMLtree (<H3> "To do list")
It is called when a user clicks on the hyper link implementgd b (<FORM>

raction (service (new)
(loop (cons new items)))
(<INPUT> :type "submit" :value "add")
(<INPUT> :name "new" :type "text"))
((map items)))))

the<A> markup. Similarly, the URhttp: //www.google.com/~
search denotes another function. It is called when the user clicks
the submit button. This one accepts a parameter namedd its
signature is hence:

string — HTMLtree

Hop transparently binds URLs to special functions calied Figure 9. An example of anonymous services.
vices These reside on the server and they are called from the

clients. They are defined by the fodafine-service whose syn-
tax is: 4.3.2 HOP service calls

The service calls presented in Section 4.3.1 suffer a strestgic-
tion: they can only produce complete web pages. By the digiinit
of HTTP and HTML they can hardly be used to compute partial
<Ident> is the name of the service andident>,, ... are its results. In order to work around this limitation, web brovsskeave
parameters. The formefine-service is similar to the Scheme introduced a new communication means which enables cltents
function definition formdefine but in addition to binding a func- call services from servers and which enables clients tolkaad
tion to an identifier in the server, it also binds it to an URIatth they wish, the results of the calls. The teAjax has been coined
can be used to run a Hop program. Let us consider the following for denoting programs using this capacity. This sectioesents its

SOOI N W

~

(define-service (<ident> <ident>p ...)
<expression>)

example which is a complete Hop program: support in Hop.
In addition to the<A> and <FORM> function invocations, any

1: (define-service (portal) Hop service can be called, from the GUI stratum, with theofe!l

2: ;; a web page with a big lambda character ing form:

3: (KHTML>

4 (<BODY> (with-hop (service arg, ...)

5: (<CENTER> [(lambda (h) ...success ezpression...)

6: ((<BIG> (<BIG> "λ"))))))) [(lambda (h) ...failure ezpression...)]])

7: . .

8: (define-service (rev q) Thewith-hop form calls the serviceervice with the arguments,
9: ;; a web page with the argument reversed argo, When the call completes, on success, the optional GUI
10: (<HTML> call-back proceduresuccess is called. On failure, the optional
11: (<BODY> call-backfaiiure is called. Both call-back procedures accept one
12: (<CENTER> argument which is the result of the evaluation of the sergioe
13’ (Setrs the main stratum. The example of Figure 10 shows an example of
1‘,45'. (Ezz;rzzrl(lsl%rin 1ist))3)))) service call. In the GUI stratum, it invokes a service thaimes the
o € q local date of the server which is displayed in a dialog baxe(fi).

N < >

17: (<HTML . 1: (define-service (server-date)

18: ;; a link to our Hop portal 2: (t-date))

19: (<A> :href portal "portal") 3'. currentrdate
20: ;; a HOP request 4: (<HTML>
21: (KFORM>

; 5: (<BUTTON>
22: raction rev 6: K lick ~(with-h % —date)
23: (KINPUT> :type "text" :name "q" :value "") ’ romeric withThop Leservermdate
24: (<INPUT> :type "submit" :value "reverse"))) 7 (lambda (h) (alert h)))
8: "Server time"))

Figure 8. A complete HOP program defining two services. Figure 10. An example of function call

When this program is executed, it first binds two services: compound data structure can transit from servers to clemds
portal line 1andrev line 8. Then, linel7, it elaborates an answer ice yersa. The following example sends a list from the ¢liethe
which is an HTML tree containing, ling9, a call to the first service server which, in turn, builds an HTML page containing a taiie
and, line22, a call to the second service. sends it back to the client. This new table replaces thelrétnpty

Similarly to anonymous functions, Hop supports anonymous gjament.
services which are no'F bound to any public URL. They are intro Because compound values can be exchanged, we could decide
duced by the fornservice: to modify the previous program in order to ship a list, frone th
server to the client, and construct the new HTML table in tfent.

(service (<ident>p ...) . e .
This modification is presented Figure 12.

<expression>)

1: (define-service (add10 1lst)
2: (<TABLE>
3: (<TR>
4: (map (lambda (e) (<TD> (+ 10 e))) 1st))))
5:
6: (<HTML>
7: (<HEAD> (<HOP-HEAD>))
8: (let ((el (<DIV> "™)))
9: (<BUTTON>
10: ronclick ~(with-hop ($add10 (list 1 2 3))
11: (lambda (h)
12: (set! $el.innerHTML h)))
13: el)))
Figure 11. Arguments of function calls.
1: (define-service (add10 1lst)
2: (map (lambda (e) (+ 10 e)) 1st))
3:
4: (<HTML>
5: (<HEAD> (<HOP-HEAD>))
6: (let ((el (<DIV> "™)))
7: (<BUTTON>
8: ronclick
9: ~(with-hop ($add10 (list 1 2 3))
10: (lambda (h)
11: (dom-remove-child!
12: $el (array-ref (dom-child-nodes $el) 0))
13: (dom-append-child!
14: $el (<TABLE> (<TR> (map <TD> h))))))
15: el)))

Figure 12. Sending complex data structures.

In addition to enable communications from clients to sesver
the formwith-hop can also be used to establish a communication
between two servers. In that case, an extra parameter dgribé
distant server is added. For instance, the following codeébeaused
to fetch the date from a remote server:

(with-hop :host "http://remote.host:8080" ($server-date)
(lambda (h) ...))

This example supposes that there is a Hop server listening to 15:

the socket por8080 of the computer nametkmote . host. It also
supposes that this server implements the sersierer-date.
When one has to fetch information from a non Hop server, thra fo
with-url can be used. It acts asth-hop except that it does not
invoke a service on a distant server, it directly fetchescihatent
of a document. Example:
(with-url "http://www.inria.fr/"

(lambda (h) (xml-parse h ...)))

4.4 HOP Event loops

Hop provides two different kinds of event loops. The first®aee
used to initiate, in the GUI stratum, computations at regtifae
intervals. Since, they are roughly equivalent to the JakpStimer
facilities, we only present them with the example shown Fégu
13. This program polls every five seconds the server timetwisic
updated on the client display.

(<HTML>
(<BODY>
(let ((clock (<DIV> "")))

(XTIMEOUT-EVENT>
:timeout 5000
rhandler
~(with-hop ($(service () (current-date)))

(lambda (h)
(set! $clock.innerHTML h)))

clock))))

SO IDGH WD

~

Figure 13. HOP timer loops.

clients from checking periodically event notifications.ig'Is, to

our knowledge, another technical innovation brought by Hop
Events are instances of thep-event class. The function of

the main stratum that signals an event has the followingopypé:

signal-hop-event!: event X <value> — unit

The markup<HOP-EVENT> has the following shape:

(<HOP-EVENT>
:event a-hop-event
:handler a-client-code)

For the sake of the example, let us study a variation over the
example of Figure 13. In this second version, the servaatsi the
communication with the client. That is, the client does nqtieitly
poll the server. It displays the server time when the seriggrats
the event.

1: (define evt

2 (instantiate: :hop-event

3: (name "server time event")))

4

5: (thread-start!

6 (make-thread

7: (lambda ()

8: (let loop O

9: (sleep! 5000)

10: (signal-hop-event! evt (current-time))
11: (Loop)))))

12:

13: (<HTML>

14: (<HEAD> (<HOP-HEAD>))

(<BODY>

16: (let ((clock (<DIV> "")))

17: (<HOP-EVENT>

18: :event evt

19: :handler ~(set! $clock.innerHTML event)
20: clock))))

Figure 14. HOP timer loops without client busy wait.

At Line 5 a thread is spawned on the server. This thread
pauses during 5 seconds and then signals the esentefined
in line 1. The forminstantiate creates an instance of the class
hop-event. The event is intercepted on the GUI stratum in line
19. In the :handler block, following the JavaScript tradition of
event handling, the variablevent is automatically bound to the
event that has been intercepted. The content oéileek <DIV> is
replaced with the value carried by the event.

One may object that we have not eliminated the busy wait but

Hop also provides an event mechanism which prevents client moved it to the server. While, undubitably true, this is neteak-

to busy wait. These events are first declared on the senar, th
is in the main stratum of a Hop program. In the GUI stratum,

ness of Hop. The point of this example is to show ttlEntsmay
avoid busy waiting server events using ##P-EVENT> markups.

clients register to these events by the means of the dedicate Itis up to the server to implement the appropriate signativegh-

markup <HOP-EVENT>. When a server emits an event, registered
clients are notified. The implementation<af0P-EVENT> liberates

anism. The point of this section is only to show that the Hofifiro
cation implements a servpushmethod.

5. Example ment to execute. Services are implemented as couples cimgtai
In this section, we show a small Hop application. We present a °N€ flim_ctlon a?ddone URL. That 'sugﬁc.h tlmeaste:jwce (anommt_
overly simplified IMAP client that uses a web interface. Aswh orno) is created, a new unique - IS generated, a new imcli
in the screenshot of Figure 15, it presents a table with tianeos. is created and the couplRL, functior} is stored inside a table
The left column displays the list of folders found on the IMAP ©On the server. When a request is intercepted, this tableaisned

servers. The upper right column shows the list of messages of ©°f sdellec:]inthSIe appropriatefservice to execute. }llvgen\jicgei;
the selected folder. The lower right column shows the body of USed inthe GUI stratum, a reference to itis compiled to Javp

the selected message. The application is interactive eFoland '\?‘t IasSt, gxpLession of trj]e G%' stratum arle conp]piled dor] theofly
messages are accessed on-demand using mouse clicks. avascript by a Hop-to-JavaScript compiler whose desenps

Hop provides a library for accessing IMAP servers. All the ©Utof scope of this present paper. Let us assume the folipitop

function that belong to this API are prefixed withap-. This API expression:
being self explanatory, it is not discussed herg. In ordenate (<BUTTON>
the application as compact as possible, we don’t providéMiAd® sonclick ~(with-hop ($(service (x y) (+ x y)) 1 2)
client with a GUI for connecting to the IMAP server. Insteéuk 3
connection to the IMAP server is held in a global variable: "Click this link")
(define connection The elaboration yields the following HTML document:
(imap-login
(make-client-socket "imap.laposte.net" 993) <BUTTON onclick=’with_hop(
1foo" "XXX")) function() {
o) return hop_service_url("/hop/?77/4-57604278",
Then comes the heart of the application. It uses two Hop wid- ["x", "y"1,
gets <TREE> and<PANED> which are popular widgets in traditional arguments)
GUI programming and which are supported by Hop. This is pre- }(1, 2), ...)’>
sented in Figure 16. "Click this link"
The two<DIV>s, folder andmessage respectively contain the ~ </BUTTON>
list of folders and the body of the selected message. Thedkftnn The dynamically created URVhop/?77/4-57604278 is the

of the application is a tree whose label is the name of the IMAP ynjque identifier associated with the service. The currenle-
server and whose leaves are labeled with the names of trerdold mentation of Hop is not able to reclaim these URLs. That is, it
keeps alive for ever all the services and their URLs. It nead+

(define (<IMAP-TREE> comnection) lects URLs because we don't think that it exists a universié-c

(zzﬁi;\m rion allowing URL reclaim. Obviously, we could adopt a sabut
(socket-hostname connection)) based on time stamping. For instance, we could arbitragbjide
(<TRBODY> to collect URL after two or three hours. We are reluctant togsd
(map (lambda (f) such a solution but we are aware that this weakness has taebe ov
(<TRLEAF> come in the future versions of Hop. We are investigating atsmi
(<TT> :class "summary" where the server functions representing the services aeded
sonclick in the URL. More precisely according to this solution it wdide

~(with-hop ($folder-summary $f)
(lambda (h) (set! $folder.innerHTML h)))
£)))

(imap-folders connection)))))

no longer necessary to store the whole function on the sdrver
stead, only the closure environment would be encoded aridsen
the client (i.e. the lexical environment active when thevieerwas
created). If this approach succeeds, it will remove the rieethe
When a leaf of this tree is clicked-in, the service of the main table which binds URLSs to functions.

stratumfolder-summary is invoked with the name of the folder. The JavaScript functiongith_hop andhop_service_url are
The result of this function call fills th€older <DIV>. This is defined in the standard Hop GUI stratum library. They aresiip
presented in Figure 17. with every generated page. As presented in Section 4.3.Dihe

The servicef older-summary builds a table with three columns with-hop calls asynchronously a service. It can be defined as:
containing respectively the subject, the author, and thissam
date of the message. When such a message is clicked, theeservi function with_hop(service, success, failure) {
message-show is called with two parameters, the folder name and ~ function callback(h) {

. . .] if(h.status == 200)
the message identifier. The result is used to fillibesage box. i (h.getAl1ResponseHeaders () . index0f ("hop-json")>=0)

(define message-show return success(eval(h.responseText));

3
4: (service (folder msg) else
5: (imap-folder-select connection folder) return success(h.responseText);
6 (<PRE> (imap-message-body connection msg)))) else
return success(h);

}s

6. Implementatlon return hop(service, callback, failure);
This section sketches the implementation of services andtev }
Readers not interested in such technical details may fekgbythis
section.
The functionhop_service_url maps a service to a URL. It
6.1 Implementation of Services could be implemented as:

Hop is currently implemented as a web server. It accepts HTTP
requests and it selects, according to the URL, the appteprieat-

26 “HOZTTTa Firatox

File Edit View Go Bookmarks Tools Help @
I, =
Coml ~ [- @ (X] @ ng | || http:/flocalhost: 8080/users/serrano/diffusion/article/hop-ang/hop-mailfhop-mail.hop _:I @ Go i@:
xDisabIe- 1 CSS- (4 Forms= 2% Images= (@ Information= [=] Miscellaneous- ﬁcut\inev [2Resizer & Tools- Iil View Source j‘_E]ODt.ions- | RN |
-
0= lmap.laposte.net Votre calsndrier 2006 vous attend 3 “Voyages-smefeom” Thu, 12 Jan 2006 15:14:12 +0100 (CET)
i Courriers Suspects | f|) 5np trajets Prem's 220 suros) “Voyages-snefcom” Wed, 11 Jan 2008 01:52.32 +0100 (CET)
{1 Dossier personnal firmware issue [Incident: 060110-0005281 *Linksys Support” Tue, 10 Jan 2008 02:05:47 -0800 (PST)
{1 orafts =?is0-8859-1707easy]et_r=E9f- ESrence_de_r=E9servation: EBCG35PP= "easylet.com” Sat, 31 Dec 2005 09:09:35 -0000
=?is0-8859-17Q7easy]et_r=E9f= ESrence_de_r=ESservation: EBCGI427= "easylet.com” Sat, 31 Dec 2005 09:05:14 -0000
% et Mew Message from Chase Online Retail Finaneial Services Tue, 12 Sep 2005 11:14:2 5 -0400 (EDT)
Trash
FY Hian

b

CALENDRIER INTERACTIF 2006 VOYAGES-SNCF.COM

7

Bonjour,
=
1| | | ||
Transferring data from localhost... =
Figure 15. Webmail, a screenshot of the simple HOP webmail in Firefox.
(let ((folder (<DIV>))
(message (<DIV>)))
(define message-show ...)
(define folder-summary ...)
(define (<IMAP-TREE> connection) ...)
(<HTML>
(<HEAD>
:css "hop-paned.css" :css "hop-tree.css" :css "hop-mail.css"
:jscript "hop-paned.js" :jscript "hop-tree.js")
(<BODY>
(<PANED> :fraction 30
(<PAN>
(<IMAP-TREE> connection))
(<PAN>
(<TABLE> :width "100%" :border "2px"
(<TR> (<TD> :class "folder" :valign ’top folder))
(KTR> (<TD> :class "message" :valign ’top message))))))))
Figure 16. Webmail, main program.
(define folder-summary
(service (folder)
(imap-folder-select connection folder)
(<TABLE> :class "summary"
(map (lambda (mh)
(<TR> :onclick ~(with-hop ($message-show $folder $(car mh))
(lambda (h) (set! $message.innerHTML h)))
(<TD> (imap-header-get mh ’subject))
(<TD> (imap-header-get mh ’from))
(XTD> (imap-header-get mh ’date))))
(imap-folder-headers connection)))))
Figure 17. Webmail, showing the messages of a folder.
function hop_service_url(service, formals, args) { The functionhop_serialize marshals JavaScript values in a
var len = formals.length; format compatible with the main stratum of Hop. When the serv
var i sends a value to the client which is not an HTML tree, it adds a

var url = service; hop-json header in the message and it uses the JSON external

format that the client simply decodes with the JavaScsipil

if (len == 0) return service;

for (i=0; i<lem; i++) function call. The library functiohop, whose code is not presented
T url+="&"+formals[i]+"="+hop_serialize(args[i]); here, actually performs the JavaScript asynchronousliadles ad-
return url; hoc technics which are dependent of the clients web browsers

6.2 Implementation of Events

The current implementation of theHOP-EVENT> markup relies
on services invocation. Waiting for an event is implemenasd
invoking an asynchronous service that returns only whereat

is emitted from the client. More precisely, when an eventis
created, the server automatically generates a seswiegy. The
markup <HOP-EVENT> is compiled, during the elaboration stage,
as an invocation ofvcgq (see Section 4.3.2). This call completes
when the server emits the sigrl. At that time, the client receives
the value associated with the event. It re-invokes the sesvic ¢

for waiting for other values and, in parallel, it handles tbeeived
value. Assuming the library functiamp_event whose definition
looks like:

function hop_event(event, event_handler) {
var http = new XMLHttpRequest();
var url = "hop_event_waitZevent=" + event;

http.open("GET", url, true);
http.onreadystatechange = function() {
if (http.readyState == 4 && http.status == 200) {
// invokes the user handler
event_handler(http);

// recursively call the function in
// order to wait new results
hop_event(event, event_handler);

}
}

http.send(null);

}

The actual implementation takes care of portability isslieg
expression(<HOP-EVENT> evt handler) is then compiled to:

hop_event(evt, handler);

This implementation prevents the client from busy waitingres
for the server because invoking a service usingMitit tpRequest
is an asynchronous operation that does not involve polSugpris-
ingly, this simple technique appears to be robust and itallto
implement passive wait on the client quite easily. It hasbaey-
gested by Marc Feeley who deserves most of its credit.

7. Discussion and Related work

In this section we discuss the design orientation of Hop aed w
present some related and future work.

7.1 Related work

execution environment. Hop is independent of any browses |
used for implementing applications that need server- arahtel
programming. It can also be used for implementing apphbcesti
that execute totally on a server. For instance, it can be fggenh-
plementing servers delivering music or for implementingeiing
via HTTP. This kind of applications is out of scope of langesg
such as XUL.

One of the closest works to Hop is due to Philip Wadler and
his colleagues. The Linkprogramming language shares the goal
of Hop. Like Hop, Links is a functional language that manages
transparent function calls across the web. As Hop a Linkgnar
is made of a single source file. Like Hop, the client codes are
compiled to JavaScript and server codes and client codebean
interleaved. Contrary to Hop, Links uses only one name spade
functions are annotated witlient or server marks depending
on where they execute. This solution is elegant becauséwsl
the use of only one single syntactic construction for cgliither
client functions and server functions. The Hop expression:

(with-hop ($lookup n) (lambda (1st) ...))

in Links is nicely written:
1st <- (lookup n); ...

However, we think that this approach has several weaknesses
First, we think that it is important to reflect, in the syntéhat call-
ing a server function is a different operation from callinglient
function. The two kinds of calls have totally different irephen-
tation and execution costs. Another weakness is that thieslap-
proach gives the illusion that programming the client araypam-
ming the server is the same. However, the two execution esgin
cannot support the same set of operations. Some operatiens a
meaningless on the server and vice versa (for instancéngeiie
dimension of the graphical user interface window is medesgy
on the server). Next, we think that the elaboration stage @b H
that allows toinject server values in the client code is a strength.
We hope that the various examples of the paper are demavistrat
enough.

The last difference between Links and Hop is the event loops
(see Section 4.4) that have no direct equivalent constnudti
Links. However, Links offersclient processeshat allow to es-
tablish asynchronous communications between the cliemtdte
servers. Hence, it might probably be possible to implemenp H
event loops on the top of Links processes.

7.1.1 Database orientation

Hop embraces in one unique language all the facets of web pro_Until recently, most of the web applications have adoptedstime

gramming. It emphasizes compactness of programs anddtitera
ity of applications. It proposes a lightweight approacheohsn
functional programming. By contrast to previous studiésloes
not enforce an interaction model based on forms submis§ioglks

It follows an opposite direction to previous studies thahed at
easing CGI programming in traditional programming langisag
The Meijer's CGI library [11] is a functional representativof
this kind. Hop also distinguishes from early works such as th
<bigwig> project [13,1] that are aimed for larger web applications
where sessionsdatabase integrationsecurity static checking of
dynamic web pagesand concurrencyare important issues. Hop
proposes a solution for authoring web pages, programmiagnth
teractions between the servers and the clients, and progranthe
reactions of the user interfaces. In that sense, it is ureetk® lan-
guages such as Mozilla’s XUL or Microsoft XAML that focus on
the programming of the clients. XUL is the programming laagg

of Mozilla which is, in addition to being a web browser, a wol

architecture. On the one hand, a server hosts a databasergots s
that access it. On the other hand, a client, i.e. a browseqaleim
ments the user interface to this server. This architectse widely
spread than many solutions have been conceived for eagrigth
velopment and maintenance of such applications. In thepliase,
libraries have been developed. Windows ASP and Java JSRare t
representatives of such libraries. Because a language fonex
particular kind of applications might ease the developmét-
guages such as PHP have appeared. A PHP program is composed of
static HTML parts and PHP expressions that dynamically geag
on the server, new HTML nodes. Databases are tightly intedra
in the language and in consequence, one might very con@sely
duce HTML documents from database queries.

Since the rise of Ajax applications, new solutions try to eom
bine the compactness of PHP for programming databasessasces

Ihttp://homepages.inf.ed.ac.uk/wadler/links.

and the programming of reactive graphical interfaces. angely
advertisedRuby On Railss one of these solutions: it defines itself
as “a full-stack framework for developirdatabase-backed web ap-
plicationsaccording to the Model-View-Control pattern”. In a Rails
application, the user interacts with an Ajakew of the database.
Requests to this database are handled dyrdroller which is built
on amodelwhich dynamically maps the tables of the database to
Ruby classes. This framework favors convention over cordiipn
and by this way tries to eliminate as much as possible the foeed
hand-written code. Most of the code of a Rail applicationus a
tomatically generated from templates and database irgotisp.
Ruby on Rails goes beyond the objectives of a programming lan
guage and is particulary efficient for the kind of applicasiat is
envisioned for.

Hop and Rails automatically generate URLSs for server sesvic
In Hop they are mapped to services (see Section 4.3). In Rals

The Smalltalk based Seaside framewfoskll be another source
of inspiration for modeling and capturing the flow of controhis
system decomposes web applications into stateful comp®nen
This successfully eliminates, from the source code, thedwuof
explicit continuations management.

Code mobility is a field that we are investigating. We are envi
sioning mobile code from server to client and vice versa. Vée a
also considering mobility intra servers. In this approaga,could
imagine spawning roaming agents processing remote dateaand
rying minimal sets of information. We could also imagine Imp
menting load balancing of servers with mobility. Preciselg are
planning to adapt the technics developed by S. Epardaudn8] a
Germainet al. [5] to Hop. In this context, the ideas of Obliq [2]
or the technical solutions delivered by the ACUTE experitj&4]
are likely to be useful.

are mapped to Ruby methods. Contrarily to Hop, Rails does not 8 Conclusion

support direct parameters passing. Hop mainly eases ttetogev
ment of the communication components of reactive web aaplic
tions. This facet is not addressed by the previously meat@ys-
tem.

7.1.2 Functional programming

Like Hop, WASH/CGil is a linguistic approach to programmihg t
web. It concentrates on CGI programming so it addressesgunsb
specific to this model such as persistency. Namely, WASH/CGI
manages sessions. This problem is eliminated by the degdign o
Hop which assumes an evaluator that is hosted by a full-fitédge
web server. Contrarily to CGl, the execution of a Hop appidca

is not split into several execution chunks. WASH/CGI foause
on interactions based on HTML forms. In particular, insgitgy
Hanus’ Curry [8], it automatically handles thetion attributes of
this HTML markup. That is, WASH/CGI replaces the URL of the
HTML forms with an Haskell function. WASH/CGI transparegntl
associates a private URL and it automatically feeds thetiomc
with the actual values found in the form. Hop’s services can b
viewed as a generalization of this approach because thepe&an
used in forms but also everywhere where a reference to argerve
used, in any JavaScript code, and in any event loop. Colyttari
Hop, WASH/CGI does not support remote service call nor dbes i
support event loops and passive event waiting.

7.1.3 Sessions and Continuations

We have learned in the late 1990’s from C. Queinnec, that melst
applications have to deal with continuations. In his eadplica-
tion [12] he has shown that a browser is a device that can oal ¢
tinuations multiply and simultaneously. Hence, he has lcafed
that an operator for capturing and restoring continuatisresnat-
ural tool of choice for implementing web pages. This poins ha
been deeply developed and thoroughly studied by the PLTrBehe
team in various publications [7]. Scheme is one of the seltiom
guages to support continuations. Td¥.1/cc (whose actual name
is call-with-current-continuatiopfacility reifies a continuation into

a function that can be called as any other function. Beingarset

of Scheme [9] Hop supportsall/cc so it naturally supports the
programming model advocated by C. Queinnec. However, tirec
support for continuations as offered lbyll/cc is arguably too
low level. Explicit manipulation of continuations can mageo-
grams very hard to understand, even for experts. So, we thatk
more restricted constructions that better fit the needs efwab
programming should be studied in the spirit of #ed/suspend
andsend/finish functions of theCONTINUE server [10].

Hop is a new computer language designed for programming web
applications. It relies on two strata. The first one is usedpfo-
gramming theserverside and for constructing graphical user inter-
faces. The second one is used for programming the animatfons
these interfaces and the interactions with users. The japsents
several examples of Hop programs. In particular, it showesptio-
gramming of a simplified IMAP client. This fifty lines long pro
gram displays interactively the messages stored on an INéARRE

Hop abstracts many operations required by the web. So, for
users not reluctant to functional programming, it makespie
gramming of these applications easier than most of the d&imer
guages we are aware of. Its main strengths are its abilitp¢ckane
a whole web application in a single bundle (e.g. a single,fits)
support for functions whose calls traverse the web, and@stano-
tification mechanism. To our knowledge, Hop is one of the Viesy
languages to proposegdobal solution to the web programming.
Hop is one of the first language to support serard client pro-
gramming, to manage communications initiated from botlesid
and to support HTML authoring.

9. References

[1] Braband, C. and Mgller, Sandholm, A. and Schwartzbach MA
runtime system for interactive Web services- Journal of Computer
Networks, 1999.

[2] Cardelli, L. —Obliqg A Language with Distributed Scope— 122,
Digital Equipment Corporation, Systems Research, Palo, &,
1994.

[3] Epardaud, S. Mobile Reactive Programming in ULM — Utah,
USA, Sep, 2004.

[4] Fielding, R. et al. Hypertext Transfer Protocol — RFC 2616, The
Internet Society, , 1999.

[5] Germain, G. and Monnier, S. and Feeley, Mlermite: a Lisp for
Distributed Computing — 2nd European LISP and Scheme
Workshop, Glasgow, UK, , 2005.

[6] Graunke, P. and Findler, R. and Krishnamurthi, S. andefsen, M. —
Automatically restructuring programs for the Web — 2004.

[7] Graunke, P. and Findler, R.B., and Krishnamurthi, S. Belieisen,
M. — Modeling Web Interactions — European Symposium on
Programming, Poland, 2003.

[8] Hanus, M. —High-level server side Web scripting in Curry —
Practical Aspects of Declarative Languages, Las Vegas\U$A,
2001.

[9] Kelsey, R. and Clinger, W. and Rees, J'he Revised(5) Report on
the Algorithmic Language Scheme- Higher-Order and Symbolic
Computation, 11(1), Sep, 1998.

[10] Krishnamurthi, S. -The CONTINUE Server (or, How |
Administered PADL 2002 and 2003)-— Practical Aspects of
Declarative Languages, New Orleans, LA, USA, Jan, 20032pp6.

2http://www.seaside.st.

[11] Meijer, E. —Server-Side web scripting in Haskell- Journal of
Functional Programming, 10(1), 2000.

[12] Queinnec, C. The influence of browsers on evaluators- Int'l
Conf. on Functional Programming, Montréal, Canada, Se02pp.
23-33.

[13] Sandholm, A. and Schwartzbach, M.Atype system for dynamic
Web documents— Boston, MA, USA, Jan, 2000, pp. 290-301.

[14] Sewell, P. et al. -Acute: High-level programming language design
for distributed computation — Int'l Conf. on Functional
Programming, Tallinn, Estonia, Sep, 2005.

[15] World Wide Web Consortium €ascading Style Sheets, level 2
CSS2 Specification- REC-CSS2-19980512, W3C
Recommendation, May, 1998.

Appendix

This appendix presents the syntax of Hop in EBNF form:
<comment> — ; <all subsequent characters up to a line break>

<expression> — <main-erpression>

<main-expression> — <simple-expression>
| ~ <gui-expression>

<gui-expression> —> <simple-expression>
| $ <main-expression>

<simple-expression> — <literal>
| <identifier>
| <attribute>
| (<expression> <expression>*)

<identifier> — <initial> { <letter> | <digit> | <special> }
<initial> — <letter> | <spectal>

<letter> — a | b | ... | z| AIBI| ... | Z
<digit> — 0 | 1| ... | 9

<special> — _ | + | - | /| x| 2> <|=11"!"17%
I ~lel "1 &I\

<attribute> — : <identifier>

<literal> — <number>
| <character>
| <string>
| <boolean>

<number> — <digit>*
| <digit>t . <digit>*
| . <digit>*

<character> — #\ <any character>

<string> — " <string-element>* "

<string-element> — <any character other than " or \>
A" T\

<boolean> — #t | #f

