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ABSTRACT

This paper presents Jsigloo, a Bigloo frontend compilingdeript

to Scheme. Javascript and Scheme share many features:rboth a
dynamically typed, they feature closures and allow for fiors

as first class citizens. Despite their similarities it is abways
easy to map Javascript constructs to efficient Scheme cadena
this paper we discuss the non-obvious transformationsneded
special attention.

Even though optimizations were supposed to be done by Bigloo
the chosen Javascript-Scheme mapping made several analgte
fective and some optimizations are hence implemented ghodsi
We illustrate the opportunities Bigloo missed and show hbe t
additional optimizations improve the situation.

1. Introduction

Javascript is one of the most popular scripting languagattadle
today. It was introduced with Netscape Navigator 2.0 in 1291l
has since been implemented in every other dominant webdemow
As of today nearly every computer is able to execute Ecmatscri
(Javascript’s official name since its standardization [B1LB97),
and most sophisticated web-sites use Javascript.

Over the time Javascript has been included in and adapted to
many different projects (eg. Qt Script for Applications, dfe-
media’s Actionscript), and it is not exclusively used forhwe
pages anymore. Most of them are interpreting Javascripgdime
are already compiling Javascript directly to JVM byte codg. (
Mozilla’s Rhino [5] and Caucho Resin [4]).

Javascript is not easy to compile though. Several of itsgrop
ties make it challenging to generate efficient code:

e Javascript is dynamically typed,
functions are first class citizens,

e variables can be captured by functions (closures),

e it provides automatic memory management, and

e it contains areval function, which allows one to compile and

run code at run-time.
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Scheme has similar features, and Scheme compilers are faced
with the same problems. Contrary to Javascript much rekearc
has been spent in compiling Scheme, and there exists sa&feral
ficient Scheme compilers now. By compiling Javascript toehoé
it should hence be possible to benefit from the already ptegen
timizations. Bigloo, one of these efficient compilers, Has sup-
plementary advantage of compiling to different targetsaddition
to C, it is capable of producing JVM bytecode or .NET’s CLI. A
Javascript to Scheme compiler would hence immediately nitake
possible to run (and interface) Javascript with these tbieérms.

When we started the compiler we expected to have the foligwin
advantages over other Javascript compilers:

e The compiler should be small. Most of Javascript's features
exist already in Scheme, and only few adjustments are needed

The compiler should be easy to maintain. A small compiler is
easier to maintain than a big, complex compiler.

The compiler should be fast. Bigloo is fast, and if the trans-

lated code can be optimized by Bigloo, the combined compiler
should produce fast code. An efficient Javascript to Scheme
compiler does not need to create efficient Scheme-code, but
code that is easily optimized by Bigloo.

e Any improvement in Bigloo automatically improves the Java-
script compiler. New optimizations are automatically aggko
the Javascript code, and new backends allow distributialifto
ferent platforms.

¢ Javascript code could be easily interfaced with Scheme nd a
languages with which Bigloo interfaces.

Many existing Javascript compilers or interpreters alycfadtured
some of the listed points, but none combined all these adgast
Our compilerJsigloqg takes Javascript code as input, and trans-
lates it to Scheme code with Bigloo extensidnghich is then op-
timized and compiled to one of the three platforms. Furttoeem
it is planned to integrate Jsigloo into Bigloo (as has beamedor
Camloo [16]) thereby eliminating the intermediate Schditee-
Section 2 will detail the differences between Javascrigt an
Scheme. In Section 3, the chosen data-structure mappintypnd
ing issues are discussed. Section 4 describes the codeatiener
and how encountered difficulties are handled. Some predingin
performance results are given in Section 5. Section 6 shdws w
Jsigloo is not yet finished and what needs to be improved in the
future. Finally, Section 7 concludes this paper.

1Most of the used extensions increase Bigloo’s efficiency emdd be
either omitted or replaced by equivalent (slower) Schenpeessions.



2. Javascript vs. Scheme

Javascript and Scheme share many features, and this sadliion
therefore concentrate on their differences rather tharlagitres.
Even though Javascript is generally considered to be arcobje
ented language, it bears more resemblance to functiongliéayes
like Scheme than to most object oriented languages. In faet-J
script's object system is based on closures which is a fedyi-
cally seen in functional languages.

Javascript's syntax resembles Java (or C), and even reader
without any Javascript knowledge should be able to folloe th
provided code samples.

2.1 Binding of Variables

In Scheme, new variables can only be created within certain e
pressions (edLet anddefine) which ensure that every variable is
defined. Javascript however is more flexible:

¢ Globals do not need to be declared. They can be defined within
the global scope (using the same syntax as is used for local
variables in functions), but it is also possible to decldrent
implicitly when assigning an undeclared varigbl€he inverse
- reading from an undeclared variable - is not possible and
throws an exception.

A variable declarationfar x;) allows one to declare variables
anywhere in a function. The variable is then setihalefinedat

the beginning of the function. Most languages provide béock
to limit the visibility of variables whereas in Javascripotks

do not influence the scoping. But even more surprising the
declaration also affects all previous occurrences of timesa
symbol. In theory one could put all variable-declarationsi
block at the end of a function.

This flexibility comes at a price though. When variables shar
the same name it is easy to accidently reference the wrorahes
and produce buggy code. The following example containsrakve
common mistakes.

1: var x = "global"; // global wvariable
2: function £() {

3: x = "local"; // references local z
4 var someBool = true;

5: var x = 2;

6: some_bool = false; // oops.

7:  if (someBool) {

8: var x = 1; // references same x
9: }

10: return Xx;

11: }

12: £0; /o => 1

A8 538 // => "global"

14: some_bool; // => false

Due to the local declaration afin line 5 and 8 the assignment
in line 3 does not change the globa) but the local one. Line
6 contains another annoying bug: instead of changing the loca
someBool a hew globakome_bool is created and set ttalse.

From a compiler’'s point of view these differences are mostly
negligible though. Only the automatic assignmenuoélefineds
of concern, as it makes typing less efficient.

2.2 Object System

Whereas Bigloo uses a CLOS-like [6] object system, Javatscri
adopted a prototype based system [13]: conceptually abpaet
ordinary hash tables with an attached prototype field. When-
ever a property (Javascript's synonym for "member”) is read
(obj.property or obj["property"]) the object's hash table

2Note, there exists a third method involving the "global altje
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is searched for this entry. If the hash table contains thpesty the
value is returned otherwise the search recursively coesirun the
object stored in the prototype-field. Either the member enév-
ally found, or the prototype does not hold an object, in wiiake
undefinedis returned. Writing on the other hand is always done
on the first object (ie. the prototype is completely ignoréfi)he
property did not already exist it will be created during thetev
Methods are just regular functions stored within the object

Fvery procedure implicitly receives #his argument, and when

called as methodopj.method() or obj["method"]()) this
points to the object (as in ling of the next example). If a function
is called as non-method (ling the this-argument is set to the
global objectwhich represents the top-level scope (containing all
global variables and functions).

: function £() {
print (this);

}
:£0; // ’this’ in f becomes the global object
: var o = new Object();
o.f = 1f;
0.f0;

N O W

// ’this’ in f becomes o

In Javascript all functions are objects, and while functien
vocations usually do not access the contained properties, t
prototype-property is retrieved, when functions are used as con-
structors. Indeed, constructors too are just functions @maot
need to be declared differently. An object creation is imaky
the construchew Fun(), which is decomposed and executed in
three steps:

e Javascript creates a new object.

e it retrieves therototype-property out of the function object’s
hash table (which is not necessarily identical to the pypiet
field of the same object), and stores the result in the prpesty
field of the newly created object.

e it runsFun as if it was invoked as a method on the new object,
hence allowing to modify it.

Even though the previous description is not entirely coneple
(we intentionally omitted some special cases), it is ndiddift to
show that prototype-based object-systems allow most (ifatip
usual Smalltalk [11] or CLOS operations. In particular intance,
private members or mix-ins [10] are easily feasible. Irtezd read-
ers are referred to [7] for a more in-depth discussion of ajat’s
object-system.

2.3 Global Object

Simply spoken, theglobal objectrepresents the scope holding
all global variables (including the functions). What difatiates
Javascript from many other languages is the fact, that this o
ject is accessible to the programmer. It is hence possibiedd-
ify global variables through an object. Interpreters synmuse
their Javascript-object structure for all global variablé/henever
needed they just provide a pointer to this structure. Howéwe
an optimizing compiler the global object is a major obstatlee
following example demonstrates how the global object thaa
simple optimizations like inlining.

: function g() { /* do something */ }

: function f(o) {
o.g = undefined;
g0

¥

SRR o

Suppose the given functions are part of a bigger progranc+un
tion £ is calling the global functiorg. If g is never changed (eg.



= some_value;), which is usually easy to detect, a good compiler then possible to statically determine all locations andrervnents
could inlineg. In Javascript it is however more or less impossibleto of eval.
be sure thag is never modified. Even the object passed tould
be the global object, anficould changg. As pointer-analysesare 3, Data structures and Types
generally very costly and compute only conservative apprax ) L . . )
tions, tracking the giobal object is not an option. The Javascrlpt specification defmeg Six typéﬂdeflned Null,

It is not even possible to avoid the use of global objects (as Pooleans, strings, numbers and Object. This section pisee
should be done with theith-construct). The global object is ac- chqse’n representation of these types in the compiled caste: J
cessed by two ways: it is assigned to the s variable in the global ~ SCrpt's strings and booleans are directly mapped to theheie

scope (easily avoidable), but it is also passed to everytiamcall, counterparts. As relmplemen.tatlon of Ja\{ascrlpt’s nusbeuld
where it becomes thehis-variable. Exceptions are all method- ~have been too slow and too time-consuming, numbers are rdappe
calls where the global object is replaced by the object orcivttie to Scheme doubles. This representation does not conforimeto t
method is executed (Section 2.2 shows an example). ECMA specificatiofl, but the differences are often negligiblén-
definedand Null are both constants and currently represented by
2.4 Variable Arity Functions Scheme symbols. Asull is generally used for undefined objects

we might replace it by a constant object in future versionksajfloo
to improve typing.

Javascript objects however could not be mapped to any pranit
Scheme (or Bigloo) type. In Javascript properties can be@dddd
removed to objects at run-time, and Bigloo’s class-systeasaot
allow such modifications. As aresult a Bigloo class0Object has
been written that represents Javascript objects. It aosnt@ihash
table as container for these dynamic properties and a ppEeot
field which is needed for Javascript's inheritance. Sevasabci-
ated procedures simulate Javascript's property accesskedaza-
script’s objects are now directly mapped to the-0bject and its
methods.

Javascript functions are objects with an additional field-co
taining the Scheme procedure. In our cage-Function is a
Bigloo class deriving fromJs-0bject, where a new fieldfun
holds the procedure. A function call gets hence translateun a
member-retrieval {ith-access) followed by the invocation of
the received procedure. Figure 1 shows the two classes &nd th
js-call-function executing the call. (a description tiis-var
andarguments-vec is found in Section 4.4).

Scheme and Javascript both allow variable arity functibostheir
approach is quite different. Scheme procedures must ékypkd-
low supplementary parameters, whereas Javascript fursctioe
automatically prepared to receimaynumber of arguments. Even if
a function’s signature hints several parameters, it céirbstcalled
without passing any argument. The missing values are atitoma
cally filled with undefined

1: function f(x) { print(x); }
2: £0; // => prints "undefined”

If the procedure needs to know the actual number of passed
arguments, it can access theguments-object which is available
within any function. Not only does the propergize hold the
actual number of parameters, it also contains a referenegl to
argumentsarguments [n] accesses thath argument. Variables
in the function’s signature are just aliases to these entiide
following example demonstrates the usepguments. It will print
2, 3 and finally2:

function f(x) {
print (arguments.size); // => 2
x = 3; // modify first argument
print (arguments[0]); // => 3
print(arguments[1]); // => 2

: (class Js-Object
props ; hashtable
proto) ; prototype

1
2
3
4
5: (class Js-Function::Js-Object

£(1, 2); 6: fun::procedure) ; field of type procedure
’7.
8
9
10

N O Lo

: (define-inline (js-call fun-obj this-var arguments-vec)
(with-access: :Js-Function fun-obj (fun)
(fun this-var arguments-vec)))

2.5 Eval Function

Scheme and Javascript both have thel function, which al-
lows to compile and execute code at runtime. They do not wese th

same environment for the evaluation, though. Scheme dneedd- Figure 1. Javascript's objects and functions are mapped to Biglassels
veloper the choice between thaill-environmentScheme-report-
environmenbr thelnteraction-environmenfTheNull-environment Javascript is dynamically typed and variables can holdesabf

andScheme-report-environmeate completely independent of the  different types during their lifetime. Most of the time pragimers
running program and an expression evaluated in them wilag$w  do not mix types though, and it is usually possible to deteen

yield the same result. The optionlalteraction-environmentow- small set of possible types for each variable. Bigloo alyepet-

ever allows to interact with the running program. The vigtipiof forms an efficient typing analysis [15], but it cannot diéfatiate

this environment is usually restricted to the top-levela tunning Javascript types that have been mapped to the same Scheane typ
program, and it is certainly independent from the locatidrere (undefinedndnull become both symbols, objects and functions are
eval is executed. both translated to Bigloo objects). Bigloo lacks Javadespecific

Javascript, on the other hand, uses the same environment inknowledge too. Depending on the operands some Javascapt op
which theeval function is executed. The evaluated code has hence ations may return different types. One of these operatisrtaé

access to the same variables any other statementat4é loca- +-operator. If any operand is a string the result will be angfroth-
tion would have. To ease the development of Javascript derspi erwise the expression evaluates to a number.

the standard gives writers the choice to restrict the userat to As a result Jsigloo contains itself a typing pass. Contrary t
the formeval(...) (disallowing for instance.eval(...)) and Bigloo Jsigloo only implements an intraprocedural analyssem-
to forbid the assignment afval (making f=eval illegal)). It is bling the implementations found in “Compiler Design Implem
3The standard is rather unclear about what this environnesilyrrepre- 4 Javascript requires -0 and +0 to be different, which is nasfie with
sents. any Scheme number type irPRs.
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tation” [14], Chapter “Data-Flow Analysis”. This choice fifes
that parameters need to be typeddp (i.e. an abstract value de-
noting any possible type) as is the case for escaping vasaht
every function-call the types could change and they neee teeb

to top. Despite these two restrictions the typing pass is ablege ty
most expressions to some small subset. As we will see J@vascr
does many automatic conversions, and restricting the $gpenly

a little helps a lot to reduce the impact of them.

4. Compilation

Similar to Bigloo Jsigloo is decomposed into several smalle
passes, which respectively execute a specific task. Thtspirs

of the section will provide a small overview over Jsiglooista-
tecture. The remainder of the section will then focus on theec
generation. The generic case is handled first, specialiyedecon-
structs are then discussed separately. Primarily Scheregh
constructs likewith (Section 4.3) andwitch (Section 4.2) are
examined in their respective subsections, but the impbftarc-
tion compilation has its own area (Section 4.4), too. Whenev
generated code is dependent on previous optimizations We wi
revisit the concerned passes.

A first lexing/parsing pass constructs an abstract synta tr
(AST) composed of Bigloo objects representing Javasciipt-
structs. Bigloo uses a CLOS like object system and it is hpose
sible to create procedures that dispatch calls accorditigptotype.
Jsigloo does not use any other intermediate representativar
than this AST. Passes just modify the tree or update thenrder
tion stored in the nodes.

An early expansion pass then removes some syntactic sugar

and reduces the number of used nodes. Immediately afteswlaed
“Symbol” pass binds all symbols to variables. The followiress
continues the removal of syntactic sugar. The optimizapiasses
and typing is then executed before Jsigloo reaches the hdcke

The code generator still receives an AST and a simplified
version just needs to transform recursively the nodes t@i@eh
expressions and definitions. Ignoring the previously noeretd
special cases and some last optimizations this transfamat
straight-forward. Jsigloo just recursively dumps the rsodes-
ing generic functions and methods which are dispatched ac-

one being the transformed expression). The macro then atitom
cally discards all impossible configuratidns

Similar _typed-macros are used in many other places. Even
though properties of Javascript objects are always reecty
strings pbj .prop is transformed int@bj ["prop"]), the expres-
sion within the brackets can be of any type. Javascript fbeze
performs an implicit conversion to string for every accdss. in-
stance th@ in obj [0] is automatically converted int®". obj [0]
andobj ["0"] reference hence the same property. The conversion
is in this case performed by the>string_typed-macro which
reduces the tests as much as possible. Another implicitszsion
is executed for numeric operators which convert their ap#sao
numbers {>number_typed). Generally every conversion has its
_typed pendant which is used whenever possible.

(define-method (generate-scheme b::Block)
(with-access::Block b (elements)
¢ (begin
#unspecified ; avoid empty begin-blocks
,@(map generate-scheme elements))))

(define-method (generate-scheme iff::If)
(with-access::If iff (test true false)
‘(if ,(js-boolify-generate-scheme test)
, (generate-scheme true)
, (generate-scheme false))))

: (define (generate-indirect-call fun this-arg args)
; JS ensures left-to-right evaluation of arguments.
(if (or (null? args) ; 0 arguments
(null? (cdr args))) ; 1 argument
‘(js-call ,fun
,this-arg
(vector ,@(map out args)))

20: (let ((tmp-args (map (lambda (x)

21: (gensym ’tmp-arg))
22: args)))

23: ‘(let* (,0(map (lambda (tmp-name arg)

24: (list tmp-name

25: (out arg)))
26: tmp-args

27: args))

28: (js-call ,fun

29: ,this-arg

30: (vector ,Qtmp-args))))))

Figure 2. the generate-scheme-code methods for some selected
nodes.

cording to the type of their first argumendeff ine-method). Some Javascript constructs need more than just these minor
Figure 2 contains the implementations of the generic method ggjustments though. In particulasitch, with and even the well
generate-scheme for theBlock andIf nodes as well as the pro-  knownwhile do not have corresponding Scheme expressions. Due

ceduregenerate-indirect-call used for creating unoptimized
function calls.

to various optimizations, functions too are not directlypped to
their Scheme counterparts and are therefore discusse pasese

Javascript and Scheme are very similar, and this can be seengpsection.

at this level: many implementations génerate-scheme just re-
trieve the members of the nodei¢h-access), transform them,
and plug them into escaped Scheme lists. Most of the time only
minor adjustments are needed. The-method at line9, for in-
stance, needs to boolify the condition expression firstt T¥)an
Javascript Onull, undefined and the empty string are also con-
sidered to befalse, and conditional expressions need hence to
test for these values. As we already know the type (or a super-
set of possible types) of every expression, some of theteden

be discarded at compile time. Instead of generating adajuied

for every boolify-expression Jsigloo uses macros. This s@ye
complexity is moved outside the compiler itself into thetrome li-
brary. Macros are still evaluated at compile time, but nowhimi
Bigloo. The js-boolify-generate-scheme function retrieves

all possible types of the given expression and passes theheto
js-boolify_typed macro (figure 3) as second parameter (the first
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4.1 While Translation
The straightforward intuitive compilation of

1: while(test) body

to

1: (let loop ()

25 (if test

3: (begin

4: body

5: (loop))))

5The actualjs-boolify_typed in the Jsigloo-runtime even removes the
test for the type, if the expression can only have one siygle.tThe given
code sample also misses some other object-tests.



1: (define-macro (js-boolify typed exp types) 1: (lambda (x)
2 (let ((x (gensym ’x))) 2 (bind-exit (return)
3: “(let ((,x ,exp)) 8s ; do something
4: (cond 4 (return result)))
5: ,0(if (member ’bool types)
9 | 3 Spooteant ,x) ) All these examples are based on theturn statement, but
Py ,0(if (member ’undefined types) similar examples exist with theontinue keyword of thewhile
9: “(((eq? ,x ’undefined) statement.
10: ()’;f)) Our optimization relies on two observations:
11: ’
12: ,@(if (member ’null types) e If an if-branch does not finish its execution but is interrupted
;j ((;:?g ,x ’null) (break, continue, return Or throw) any remaining state-
15 ') ments following theif can be attached to the other branch of
16: ,0(if (member ’string types) theif’.
17: ‘(((string? ,x) . . . .
18: (xsloillzgtrizg=? 20 * Any invocation of the escaping closure, directly followecthe
19: *0) end of the surroundingind-exit is unnecessary and can be
20: ,@(if (member ’number types) removed.
21: ¢ (((number? ,x)
22: (not (=f1 ,x 0.0)))) The first observation allows to transform the first exampte:in
23: >0)
24: (else #t))))) 1: (lambda (x)
2 (bind-exit (return)
N — 3 (if (eq? x ’null)
Figure 3. js-boolify_typed used the calculated types to optimize the 4: (return ’undefined)
conversion. Bs ;do something
6 )))
misses an important point: loops in Javascript can be inpéed Under the assumption that theturns have not been used

(break) or shortcut ¢ontinue). These kind of break-outs require ~ €lsewhere in the code, alind-exits can now be removed thanks
eithercall/cc (or similar constructs) or exceptions. Jsigloo uses {0 the second rule:
Bigloo’s bind-exit, a call/cc that can only be used in the

- . 1: (lambda (x)
dynamic extend of its form: 2:  (if (eq? % ’mull)
3: " undefined
1: (bind-exit (break) 4: ;do something
2 (Let loop O 5: ))
3 (if test
4: (begin o .
58 (bind-exit (continue) ; ’ (?; :Z::thlng
6 (body)) 3 - »any
7 (loop))))) A8 ’thing)
In the current Bigloo version non-escapibgnd-exits are
1: (lambda (x)

not yet optimized thoughand a bind-exit removal pass has been . 3 06 e

implemented. 3:  result)
We usecind-exits notjustin loops, but also for theritch-
breaks (see next section) or the functissturns. In certain cases This optimization removes all but ongnd-exit from the 33

there is no easy way of avoiding them, but the following tfars bind-exits found in our test-cases and benchmarks.
mations are able to remove most of them. The following thee-s
ples represent some cases where our analysis allows taateni 4.2 Switch Construct

bind-exits. Javascript'sswitch statement allows control to branch to one
of multiple choices. It resembles Schemesse and cond ex-
1 (lambda ) i hich th A ill it
2:  (bind-exit (return) pressions, which serve the same purpose. As we will seéenei
3: (if (eq? x ’null) (return ’undefined)) of them has the same properties as the Javascript consindt,
4: ;do something switch therefore need to be translated specially.
R Javascript permits non-constant expressiotaae clauses and
in the following exampleexpri, expr2 and expr3 could thus
1: (bind-exit (return) represent any Javascript expression (including funatilfs):
2: ; do something
3 (if test , 1: switch (expr)
4 (return a“Y) 2: case exprl: bodyl
5: (return ’thing)) 3: Case expr2: body2
6: ) 4 default: default_body
5 case expr3: body3

6Bigloo’s bind-exit supplies a closure, which, when invoked, unwinds

the execution flow to the end dfind-exit’s definition (not unlike excep- It is therefore not possible to mapitch to Scheme'scase

tions caught by aatch). Jsigloo uses only a small part bind-exit’s which only works with constants. Scheme’snd, on the other
functionality. The supplied closure never leaves the eurpeocedure, and

in this case invocations of bind-exit can be transformed giplegotos. 71 neither branch finishes normally, the remaining statetmeme dead
Future versions (post 2.7) of Bigloo will contain such animitation. code, and can hence be removed.
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hand, evaluates arbitrary expressions, and if it was nofldon-
script’s “fall-throughs”, aswitch statement would be easily com-
piled into an equivalentond expression:

1: (let ((e expr))
2 (cond
&5 ((eq?
4: ((eq?
Be
6

exprl e) body1l)
expr2 e) body2)
expr3 e) body3)
default_body))

((eq?
(else

As it is, a case-body falls through and continues to exedge t
body of the next case-clause (unless, of courgs;dtiks out of the
switch). To simulate these fall-throughs Jsigloo wrapshbdies
into a chain of procedures. Each procedure calls the fofigwibdy
at the end of its corps and hence continues the control-flaiveat
beginning of the next clause’s bodteaks are simply mapped to
bind-exits and are not yet specially treafed.

The following code demonstrates this transformation @ojio
our previous example:

1: (bind-exit (break)

2: (letx ((e expr)

3: (cond-body3  (lambda () body3))
4: (cond-default (lambda ()

5: default-body

6: (cond-body3)))
Vs (cond-body2  (lambda ()

8: body2

9: (cond-default)))
10: (cond-body1 (lambda ()

11: body1

12: (cond-body2))))
13 (cond

14: ((eq? exprl e) (cond-bodyl))

15: ((eq? expr2 e) (cond-body2))

16: ((eq? expr3 e) (cond-body3))

17: (else (cond-default)))))

Even though Javascript's default clause does not need toebe t
last clause, it is only evaluated once all other clauses baes
tested. It is therefore safe to use #nd’s else-clause to invoke
the default body, but care must be taken to include its bodiien
correct location of the procedure-chain.

4.3 With Statement

The access to the properpyrop of a Javascript-objectsbj is
usually either done by one of the following construetsj . prop
or obj ["prop"]. A third construction, theith-keyword, pushes
a complete object onto the scope stack which makes all cedai
properties equivalent to local variables. Within intetpre this
operation is usually trivial. The interpreter just needsréose
the Javascript object type as representation of a scopen\ihe
encounters aith it pushes the provided object onto their internal
scope-stack. Compilers do not use explicit scope objectsgth,
and pushing objects onto the stack is just not feasible.

Moreover, an efficient compilation of theith-statement is
extremely difficult. As Javascript is a dynamically typeddaage
it is not (always) possible to determine the type and henee th
properties of th&ith-object. Even worse: Javascript objects might
grow and shrink dynamically. It is possible to add and remove
members at runtime. The following code shows an exampleavher
a variable within a closure references two different vddaakeven
though the same object is used.

8The current transformation has been implemented followisgggestion
of a reviewer, and it was not possible to remove Bi@d-exits in this
short time-frame.
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1: var o = new Object();
2: function f(x)

3:

4: with(o) {

&8 return function() { return x; };
6:

s

8: g =£(0);

9: g0 /7 => 0;

10: o.x = 1; // adds z to o
11: gO; 1/ =01

During the first invocation (lin®) of the anonymous function
of line 5 theo object does not yet containand the referencexdis
hence the one of the functicn After we addedk to o another call
to g references the objectisnow.

It is therefore nearly impossible to find the shadowed véemb
when entering arith-scope, but a test needs to be done at every
access. As a result Jsigloo replaces all references totiailgim-
tercepted variables by a call to a closure which is then éaliby
Bigloo. This closure tests for the presence of a same-nanssg-m
ber in thewith-object, and executes the operation (eitbet or
se) on the selected reference. Note thath constructs might be
nested, and in this case the operation on the “selectecerafet
involves calling another function. This transformatiom & simpli-
fied version) is summarized in the following code snippet.

1: with(o) {
X =y;

D

becomes

(let ((x-set! (lambda (val) (if (contains o x)
(set! o.x val)
(set! x val))))
(y-get (lambda () (if (contains o y) o.y y))))
(x-set! (y-get)))

O OB

This approach obviously introduces a performance penatty a
together with the sometimes unexpected results (like thsuce
referencing different variables) a widely accepted recemadation
is to avoidwith completely [7].

4.4 Function Compilation

The function translation is the arguably most challengiag pf a
Javascript to Scheme compiler. Not only is Javascript atfonal
language where functions are frequently encountered, idehe
compilers usually optimize functions, and a good transtatian
reuse these optimizations. This section will restate thpnif-
ferences between Javascript functions and Scheme prasedie
will then discuss each point separately, and detail howalsigan-
dles it. Bigloo is often unable to optimize Jsigloo’s genéransla-
tion of functions, and the last part of this section presésigloo’s
optimizations for functions.

Three primary features make the function translation fraumad
script to Scheme difficult (for a more detailed discussion Sec-
tion 2):

e Every Javascript function can serve as method too. In thss ca
every occurrence of the keywotilis in the function’s body is
replaced by the object on which the function has been invoked
Otherwisethis is replaced by thglobal object

e It is possible to call every function with any numbers of argu
ments. Missing arguments are automatically filled witide-
finedand additional ones are stored in #rgumentobject.

e Javascript functions are objects.

Jsigloo’s compilation of thehis keyword is straightforward:
When translating functions an additional parameteis is added



in front and all call-sites are adjusted: method calls passat-
tached object as parameter, and function calls pasgltiel ob-
ject

Javascript functions can be called with any number of argu-

ments and an early version of Jsigloo compiled functionsheo t
intuitive form (lambda (this . args) body) to use Scheme’s
variable arity feature. Some measurements revealed tlddi
was more efficient, if vectors were used instead of the intpigts.
At the call-sites a vector of all parameters is construcaed, then
passed as second parameter aftetties. A translated function is
now of the following form:(1ambda (this args-vec) body).
Inside the function every declared parameter is then repted

by a local variable of the same name. At the beginning of tloe pr

cedure the local variables are either filled with their copandent
values from the arguments vector, or satihalefinedFigure 4 con-
tains a simplified unhygienic version [8] of this processe Bame
figure shows the result for the declared parametensdb.

‘(let* ((len (vector-length vec))
,@(map (lambda (param-id count)
¢(,param-id (if (> len ,count)
(vector-ref vec ,count)
’undefined)))
param-list
(iota (length param-list))))

DX oA O

,body)

(let* ((len (vector-length vec))
(a (if (> len 0) (vector-ref vec 0) ’undefined))
(b (if (> len 1) (vector-ref vec 1) ’undefined)))
body)

™ W~

Figure 4. the Jsigloo-extract at the top generates the code respefisib
extracting the values out of the passest. The code at the bottom gets
generated for the parameterandb.

After the variable extraction Jsigloo creates the argumehbt

ject. As thearguments-entries are aliased with the parameter vari-
ables & andb in the previous example) we use the same technique

as for thewith statement: the entries within tkeguments ob-
ject are actually closures modifying the local variableddional
arguments access directly the values within the vectourgid
demonstrates this transformation.

As has already been stated in Section 3, Javascript furscaian
mapped to the Bigloo classs-Fun, which contains a fieldun
holding the actual procedure. Jsigloo’s runtime libraryyides the

proceduremnake-js-function, which takes a Scheme procedure

with its arity and returns such an object. Jsigloo only negds
translate the bodies of Javascript functions, and geneade,

that calls this runtime procedure with the compiled functis

parameter . The returned object of type-Fun is compatible

with translated Javascript objects. As the compiled fuomcis now

stored within an object, function calls are translated amtnember

retrieval, followed by the invocation of the received progee.

The overhead introduced by these transformations is substa

tial: the compilation of the simple Javascript functitanction

f(a, b) {} produces a Scheme expression of more than 20 lines,

and the applied transformations are extremely countedtprtive
to Bigloo’s optimizations. Storing the procedure in an abjef-
ficiently hides it from Bigloo’s analyses. The Storage UsealAn
ysis [15] (henceforth SUA), responsible for typing, and IBajs
inlining pass are both powerless after this transformatidre ar-

guments are then obfuscated by storing them in vectors, evher

Bigloo’s constant propagation can not see them. When Ingjlttie
arguments objects they are furthermore accessed froneiasitb-
sure, which makes them slower to access.
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1: ‘(let ((len (vector-length vec))

2: (arguments (make-Arguments-object)))

3: ,@(map (lambda (param-id count)

A8 “(if (> len ,count)

5: (add-entry arguments

6: (lambda () ,param-id)

978 (lambda (new-val)

8: (set! ,param-id new-val)))))
195 param-list

10: (iota (length param-list)))

11: (let loop ((i ,(length param-list)))

12: (if (> len i)

3 (begin

14: (add-entry arguments

15: (lambda () (vector-ref vec i))
16: (lambda (new-val)

17: (vector-set! vec i new-val)))
18: (loop (+ i 1)))))

19: ,body)

1: (let ((len (vector-length vec))

2 (arguments (make-Arguments-object)))
3 (if (> 1len 0)

4: (add-entry arguments

5: (lambda () a)

6: (lambda (new-val) (set! a new-val))))
7 (if (> len 1)

8 (add-entry arguments

9: (lambda () b)

10: (lambda (new-val) (set! b new-val))))

11: (let loop ((i 2))

12: (if (> 1len i)

13: (begin

14: (add-entry arguments

15: (lambda () (vector-ref vec i))
16: (lambda (new-val)

9978 (vector-set! vec i new-val)))
18: (loop (+ i 1IN

19: body)

Figure 5. the Jsigloo code at the top is responsible for dlrguments
creation in the emitted result. The bottom is generateddoapetera and

Jsigloo contains some optimizations addressing thesedssu
simple one eliminates unnecessary lines: the creationeoétyu-
ments object is obviously only needed if the variaddtguments is
referenced inside the function. Otherwise Jsigloo justtenfiese
lines.

In order to benefit from Bigloo’s optimizations the indirect
function calls need to be replaced by direct function caherever
possible. Jsigloo’s analysis is still relatively simpleit it catches
the common case where declared (local or global) functioas a
directly called. The optimization is not yet correct thoughd in
its current form it needs to set an important restrictiontainput:
the given program must not modify any declared functions ove
the global object or in aeval statement. Section 6 discusses the
necessary changes for the removal of this restriction.

Single Assignment Propagation (SAP) performs its optimiza
tion in two steps. First it finds all assignments to a variadnel
stores itin a set. Then it propagates constant values @irgddunc-
tions) of every variable that is assigned only once in thele/poo-
gram.

Computing the definition-set is easy, but not trivial: Javams
automatically sets all local variables timdefinedat the beginning
of a function, and nearly every variable is hence modifieccast
twice. Once it is assigned tmdefinedand then to its initial value.
Declared functions (global and local) are immediately egheir
body and are hence treated accordingly. For all others afidata
analysis needs to determine, if the variable might be usel&-un
fined. This analysis is mostly intraprocedural, and onlydseene



pass. Some parts are however interprocedural as escapialglea
cross function boundaries. Take for instance the follovdode:

1: function £() {

2: vary =13

3: var g = function() { return x + y + z; };
4 varz=2;

5: gO;

6 var x = 3;

7

8

8 return x + y + z;
:}

Even though withint the variablex is read only after the defi-
nition in line 6, the call at line5 still uses the undefined variable.
on the other hand is always used after its first (and uniqui@)ide
tion. Usually these cases are difficult to catch, but SAP mes#o
find at least the most obvious ones: if a variable is definedrbef
an anonymous function has been declared (as is the cageirfor
our example), the analysis does not add the implindefinedlef-
inition to the variables definition set. SAP does hence ctifrset
y’'s definition set to the assignment in li@ebut will find two defi-
nitions forz. At the moment og’s declarationz is still undefined,
and as it is used withig the final definition set o will hold the
implicit undefineddefinition and the assignment at lide

The implicitundefinedassignments are disturbing Bigloo’s op-
timizations too. Whenever in doubt Jsigloo sets the vagiabun-
definedat the beginning of a function. One of the first analyses
Bigloo applies is the SUA-analysis, which detects the asaint
of undefinedand types the variable accordingly. Even if Bigloo is
able to remove this assignment later on, it will not retype\thri-
able, and misses precious optimization opportunities.

Once the definition-set has been determined, a second
propagates “single assignments”. If a variable has onlyass&gn-
ment in its definition set, and this assignment sets the hiarieo
a constant value or a Javascript function, all occurrenéebi®
variable are replaced by either the constant, or by a referém
this function. In our example the linéstill usesx andz, as their
definition-sets contain more than one assignment. The ggttian
transforms our previous example into the following code:

: function f()

var y = 1;

var g = function() { return x + 1 + z; };
var z = 2;

anonymous_g() ;

1
2
3
4:
5:
6: var x = 3;
s return x + 1 + z;

8: }

Wherever the backend finds direct function-referencesioig
able to optimize the call. Instead of extracting the procedtom
the function object it can use the function-reference. Tiewipus
creation of function objects must first be modified to allowess
to the procedure:

e
2:

(set! direct_f (lambda (this vec) body))
(set! f (make-js-function direct_f 2))

In our benchmarks and test-cases 27% of all function cailkico
be replaced by direct function calls after this analysis.

Wherever Jsigloo is able to replace the indirect calls witaal
calls it can also improve the parameter passing. The fumstgg-
nature provides the expected number of arguments, and thmpa
ters do not need to be hidden in a vector anymore. If there & m
ing arguments, they can already be filled witlhdefinecconstants
at compile-time. An additionalrg-nb parameter passes the orig-
inal number of arguments, which is needed for the creatiahef
arguments object. The last argument finally contains amithtiar-
guments, that have not been mapped to direct parameterswilhe
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pass

be used duringrguments creation, too. Obviously the generic call
needs to be adapted too, and the parameter-extraction of dige
lifted into the procedure passed to teke-js-function.

Many functions do not usehis and in this case the first ar-
gument can be removed. The same is of course truedfgrnb
and rest-vec, which are only needed, if the function uses the
arguments-object. Our running example is finally transfeirimto
the following code:

(set! direct_f (lambda (a b) body))
(set! f (make-js-function
(lambda (this vec)
(let* ((len (vector-length vec))
(a (if (> len 0)
(vector-ref vec 0)
’undefined))
(b (if (> len 1)
(vector-ref vec 1)
’undefined)))
(direct_f a b))

POEIIPILIPE

2))
Applying these optimizations to the well known Fibonaceidu

tion let the size of procedure drop from more than 75 to ab6ut 2
lines’, and reduce execution time by a factor of more than 20.

5. Performance

Ack Fib Meth Nest Tak | Hanoi
Jsigloo J 1931 | 443 185 898 28 424
Rhino 1042 666 155 973 55 619
Jsigloo C 513 368 84 1060 11 368
Konqueror - 17183 | 262 | 15478 | 593 | 21049
Firefox - 3179 227 1808 79 2762
NJS - 767 23 1481 25 734

Jsigloo is not yet finished, and the given benchmarks (sesgpthe
pendix for the sources) are therefore just indications. Aswanted
to be able to run our benchmarks on most existing Javasonipt i
plementations we decided to move the time-measurementhiato
benchmark itself. This way it was possible to benchmarkrinte
net browsers too. At the same time we lost the start-up oeerhe
and the more precise measurement of the Linux kernel. Akgim
have been taken under a Linux 2.6.12-nitro on an AMD Athlon
XP 2000+, and are expressed in Milliseconds. We used SuiKs JD
1.4.2.09 (HotSpot Client VM, mixed mode) and GCC 3.4.4. We ra
every benchmark at least three times, and report the fastest
sured time here. Konqueror [2], Firefox [1] and NJS [3] wheoe¢
able to complete Ack (stack overflows) and do not have a time fo
this benchmark.

“Jsigloo J” uses Bigloo’s JVM backend, whereas “Jsigloo C”
targets C, followed by a compilation to native code. “Rhiniof
version 1.6R2RC2, compiles Javascript directly to JVM byt
and competes hence with “Jsigloo JVM”. The fastest time @n th
JVM machine is underlined. “Konqueror” 3.4.2, “Firefox”016
and “NJS” 0.2.5 are all interpreters (even though NJS wasveldl
to precompile the Javascript code into its bytecode forianad)are
compared to “Jsigloo C”. The fastest time is in bold.

During the development these benchmarks have been (and are
still) used to pinpoint weak spots of Jsigloo, which werenthe
improved. One of the first benchmarks has been Fibonaccchwhi
explains Jsigloo’s good results in some of the other cadirigive
benchmarks (Hanoi and Tak). “Nest”, as the name hints, inergs
a number within nested loops. We verified our results and for
this benchmark the Java version is actually faster than #tieen

9We are well aware, that this is still far away from a standartinés
implementation, but most of the resting lines are redundans, begins
or #unspecified which are easily removed by Bigloo.



C version. The JVM version of Ackermann is still slower than
Rhino’s code, but we have pinpointed the source of ineffjen
and a generic transformation brings the time for “Ack” dowrihe

with all languages Bigloo interfaces and excels in this aFea-
thermore, if Bigloo improves, Jsigloo/Bigloo will improveo.
Despite Javascript’s resemblance to Scheme, we could ket ta

same level as Rhino. “Meth” on the other hand makes heavyfuse o full advantage of all Bigloo optimizations and needed to leap

anonymous functions and objects, and this part of Jsiglootiget
optimized at all.

Note, that Jsigloo is not conformant to the ECMA specifiaatio
(see Section 6), and has therefore an unfair advantagelm/eoin-
petitors. Some tests showed that Fibonacci's executioa would
double if the global object was treated correctly. Otheregignces
however confirmed, that for instance a fully optimizing Rhis
not conformant either, and especially thebal objectis equally
ignored.

6. Future Work

Jsigloo is not finished. Several Javascript features haveyeio
been implemented and some parts of Jsigloo are not confotman
the ECMA specification. From the more than 10 runtime objects
only two have been written until now (in particular theolean,
String, Number andDate objects are still missing). Due to limi-
tations in the used lexer-generator, some syntactic segaisising
too (Javascript's automatic semicolon insertion and igsila ex-
pression literals).

At the moment Jsigloo does not handle the global object cor-
rectly either. It is not possible to modify global variableger an
object, and function calls receive a standardect asthis. We
intend to fix this shortcoming by adding two strategies:

e a “correct” solution using a special global object, thatdsol
closures. Whenever a field is modified the closure automati-
cally updates the real global object. (Inversely readiongithe
global object automatically redirects to the real globailalzle).

A similar strategy is already being used for thgsuments ob-
ject and thesith translation.

¢ a fast implementation which disallows the use of the global
object. Every access to the global object throws an exaeptio

The eval function is missing too. Javascript’s and Scheme’s
eval specification are different and incompatible, but Bigloo-pr
vides some extensions to Schemeis1 which should allow the
implementation without too much trickery.

Once either theval-function or the global object is correctly

ment additional optimization passes. SAP (Section 4.4peoés
direct method calls, Bind-exit-removal pass (Section 4.1) elim-
inates unnecessary (but currently expenshied-exits, and typ-
ing (Section 3) improves the ubiquitous conversions of Jeawpt
and helps several Bigloo optimization by providing Javigger
specific type information.

Compiling to Scheme and using an efficient existing Scheme
compiler did not fulfill all our expectations, but still y@#d an
interesting compiler. Once all missing features are imgletad
Jsigloo may be an attractive alternative to all other Jaiatscom-
pilers.
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implemented, the SAP optimization of Section 4.4 needs to be [16] Serrano, M. and Weis, P.2+1=1: an optimizing Caml compiler—

adapted. Functions that are visibled®al statements and global
functions might not be called directly anymore.

Finally the number representation needs to improved. depas
numbers are mapped to Scheme doublesﬁnsF{lZ] doubles do
not provide enough functionality to correctly representadaript
numbers, but Brswill extend Scheme’s number specification, and
we will revisit this topic once Rrshas been released.

7. Conclusion

We presented in this paper Jsigloo, a Javascript to Scheme co
piler we implemented during the last five months. Togetheh wi
Bigloo it compiles Javascript to Java byte-code, C, or .NHT.C
In the introduction we listed the features Jsigloo shoulehaVe
wanted the compiler to be small. Jsigloo is not very big, bithw
about 30.000 lines of Scheme code Jsigloo is not small argnitor
is still easy to maintain the project, but the effort reqdirg higher
than we hoped it would be. Jsigloo’s size is explained by the o
timizations we integrated in Jsigloo, and preliminary denarks
show that Jsigloo/Bigloo has the potential to be as fastafastest
existing Javascript compilers. As Jsigloo uses Biglootiiifaces
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ACM Sigplan Workshop on ML and its Applications, Orlando
(Florida, USA), Jun, 1994, pp. 101-111.

8. Appendix

Benchmarks
Ackermann

function ack(M, N) {
9 if (M == 0) return(N + 1);
if (N == 0) return(ack(M - 1, 1));

g
2
3:
4: return(ack(M - 1, ack(M, (N - 1))));
5:
6
Us

Fibonacci

1: function fib(i) {
2 if (1 < 2)

&s return 1;
4: else
5:
6
7

return fib(i-2) + fib(i-1);

: £ib(30);



Method Calls Tak

1: function methcall(n) { 1: function tak(x, y, z) {
2 function ToggleValue () { 2 if (M (y < %))
3: return this.bool; & return(z);
4 - 4:  else {
58 function ToggleActivate () { 5: return (
6 this.bool = !this.bool; 6 tak (
7. return this; 7 tak (x-1, y, z),
8: } 8: tak (y-1, z, x),
9: 9: tak (z-1, x, y)
10: function Toggle(start_state) { 10: ));
11: this.bool = start_state; 11: }
12: 12: }
13: this.value = ToggleValue; 13:
14: this.activate = ToggleActivate; 14: tak(18, 12, 6);
15:
P 4 Towers of Hanoi
;g; ﬁEEi%&%%+g£z;?EiiﬁtCZji;:E;fzoj;tJmax> ( é: fun;;i?nbﬁ:yers(;kiijsfs, source, dest, temp) {
: i = 1thi 8 § if (nb_discs
23; ;gi;::zzit =.§?1s.bool, Z: return towers(nb.discs - 1,
22: } : source,
23: return this; g: ;emss
. : es
2‘,45 } s +1
26: function NthToggle (start_state, max_counter) { & * oreraEhalia = d,
27: this.base = Toggle; 9% TRy
28: this.base(start_state); 4% 3By
29: this.count_max = max_counter; iis source) ;
30: this.count = 1; 12: }
31 I 13: return 0;
32: this.activate = NthToggleActivate; ;é:
gj; 16: towers(20, 0, 1, 2);
35: NthToggle.prototype = new Toggle;
36:
37: var val = true;
38: var toggle = new Toggle(val);
39: for (i=0; i<n; i++) {
40: val = toggle.activate().value();
41:
42: var tmp = (toggle.value() ? "true"
88 : "false");
44
45: val = true;
46: var ntoggle = new NthToggle(val, 3);
47: for (i=0; i<n; i++) {
48: val = ntoggle.activate().value();
90}
50: return (tmp + " " +
51: (ntoggle.value() ? "true"
52: : "false"));
53: }
54:

55: methcall(10000) ;

Nested Loops

1: function nested(n) {

2: var x=0;

3: var a=n;

4: while(a--) {

5: var b=n; while(b--) {

6: var c=n; while(c--) {

e var d=n; while(d--) {

8: var e=n; while(e--) {
9: var f=n; while(f--) {
10: X++;

11: }

12: }

13: }

14: }

15: }

16: }

17: return x;

18:

19:

20: nested(14);
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